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Many fundamental studies based on the evolution equations derived by long-wave
approximation have contributed to the fact that the dynamics of a thin film flowing
down an inclined plane is now one of the best-understood problems of hydrody-
namic stability. In most engineering applications however, the stability behaviour of
the film flow is modified by complex coupled transport processes, and because of
the huge amount of algebra needed to derive the evolution equations in these cases,
an investigation by numerical methods is often preferred by engineers. In this pa-
per, we illustrate how computer algebra techniqes can be used to derive and analyse
long-wave evolution equations even for very complex situations automatically, thus
making the advantages of symbolic solutions available for such applications. Us-
ing these methods, higher-order approximations can also be obtained automatically.
These are of interest since they can provide heuristic estimates for—and extensions
of—the range of validity of the long-wave approximation.c© 1999 Academic Press
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1. INTRODUCTION

Since the experiments of the Kapitza [1] in the forties, the interfacial wave patterns
developing on a thin liquid film flowing down an inclined plane have been investigated
by many researchers as a fascinating example for complex nonlinear dynamics (see the
reviews by Chang [2] and Lin and Wang [3]). In addition to this fundamental interest, the
understanding of the stability behaviour of thin liquid films is of great importance for many
industrial applications like coating and drying, heat exchangers, or chemical reactors. In
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most of these applications the stability behaviour is modified by the interaction of heat and
mass transport processes with the flow.

For low Reynolds number flows, the long-wave approximation proposed by Benney [4]
turned out to be a very successful model which captures much of the nature of transitional
flow of thin films. It is based on the expectation that the wavelength of unstable interfacial
disturbances of uniform film flow must be large compared to the film thickness because of
the stabilizing effect of surface tension for short waves. Thus—by an asymptotic analysis in
the limitα→ 0, withα being the dimensionless wavenumber—a single nonlinear evolution
equation for the shape of the free surface of the film can be derived from the Navier–Stokes
equations (and any transport equations coupled with them). The technical effort of a quali-
tative analysis is reduced dramatically by considering this evolution equation rather than the
original system, such that simple formulas describing the dependence of the linear stability
of uniform film flow on the parameters can be found. Moreover, the primary bifurcation of
unstable uniform film flow into permanent wave trains can be predicted readily by weakly
nonlinear stability analysis (see, e.g., Benney [4], Lin [5], and Gjevik [6]). More complex
dynamical phenomena such as solitary waves (see, e.g., Pumiret al. [7]) or the stability
of two-dimensional permanent waves with respect to three-dimensional disturbances (see
Jooet al. [8]) were also studied using the long-wave approximation.

Usually the asymptotic expansion is truncated at first order inα assuming a strong surface
tension influence. Lin [5] investigated the second-order evolution equation which allows
for consistent prediction of the dispersion of the linear and nonlinear waves. For the case
of weak surface tension, Nakaya [9] and Chang [10] considered the third-order evolution
equation.

The long-wave approximation was also applied successfully to investigate film flows cou-
pled with complex transport processes such as evaporation and condensation (see Burelbach
et al. [11] and Jooet al. [12]), which have important applications in engineering.

For a more complete outline of the fundamental stability results obtained by the long-
wave approximation we refer to Chang [2] and Lin and Wang [3]. In the present paper, we
are concerned with the application of this well-developed theory to engineering problems.
From that point of view, the following two issues are addressed.

First, many practical problems involve heat and mass transfer, or even chemical reactions.
Since the stability behaviour of such systems may depend on many parameters, the long-
wave theory has the advantage that the dependence of the relevant stability results on the
parameters can be obtained directly as formulas rather than by extensive parameter studies,
which would be necessary using numerical methods. However, even the derivation of first-
order evolution equations can already be a very tedious and error-prone task for problems
involving transport processes, and it is practically impossible to derive higher orders of the
long-wave approximations manually. Fortunately, all the algebraic manipulations necessary
for the derivation of evolution equations can be formulated as a standardized algorithm and
implemented in a computer algebra system, as, for example, MAPLE [13]. After specifying
the general form of the governing equations and a model problem in Section 2 of this paper,
we illustrate such an implementation in Section 3, which automatically computes higher-
order evolution equations for film flow coupled with an arbitrary number and arbitrary types
of transport processes.

This symbolic algorithm extends the basic ideas as given by Atherton and Homsy [14],
who used an early version of the computer algebra system REDUCE in the mid-seventies
to calculate the evolution equation for axially symmetric and three-dimensional isothermal
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film flow. It should be pointed out, however, that the second-order approximation stated in
their paper contains errors.

A second issue of practical importance is the fact that the range of validity of the first-
order approximations may be very limited, as is indicated by comparison with experimental
stability results and comparisons with numerical solutions of the Orr–Sommerfeld equations
(see, e.g., Krantz and Owens [15], Liuet al. [16]). Theoretically, the long-wave approxi-
mation should be valid for small wavenumbers and small Reynolds numbers, but there is
no quantitative a priori estimate for this range of validity. Such an estimate would be very
useful in order to assess the suitability of the approximation for a specific application.

Since many of the methods of linear and weakly nonlinear analysis can also be fully
automatized by computer algebra, it is not only possible to derive, but also to analyse
the higher-order evolution equations. In Section 4, we perform a linear stability analysis
for the fifth-order equation and illustrate how the comparison of the results of different
order can be used as an indicator for the range of validity of the long-wave approximation.
Using Pad´e-approximation, we show that the information obtained at fifth order is even
sufficient to predict the published experimental data for shorter wavelengths and relatively
high Reynolds numbers remarkably well.

Using Landau theory as an simple example for a weakly nonlinear analysis, we illustrate
in Section 5 that computer algebra methods also provide automatic modeling of the primary
bifurcation of the uniform flow into permanent waves, even if complex transport processes
are involved. Similar to the question of the range of validity inα already discussed in
connection with the linear analysis, it is useful to know how far away from the bifurcation
point the weakly nonlinear analysis will still be valid. It is illustrated that the comparison
of the results obtained using different orders of the long-wave approximation provides here
a heuristic criterion, too.

2. GENERAL FORM OF THE GOVERNING EQUATIONS AND A MODEL PROBLEM

The governing equations for most problems involving a film flow with several (N) coupled
transport processes can be written in the dimensionless form

∇ · u = 0, (1)

Re(ut + (u · ∇)u) = −∇ p+1u+G, (2)

Re Sci ((Ci )t + (u · ∇)Ci ) = 1Ci + Fi (i = 1 . . . N). (3)

The velocity fieldu= (u, v, w) is scaled with a characteristic velocityU, which may depend
on the specific problem under consideration. The spatial coordinates(x, y, z) are scaled
with the unperturbed film thicknessH , and the time coordinatet is scaled byH/U . The
transport quantitiesCi are also scaled by problem-dependent characteristic values0i . Thus,
Re= ρ0U H/µ denotes the Reynolds number, withρ0 being a characteristic value of the
density andµ being the dynamic viscosity of the liquid, and theSci = ν/Di denote Schmidt
(or Prandtl) numbers withDi being the diffusivities of the transport processes.

The source termG in Eq. (2) models the gravitational force and is usually constant;
however, it may also account for bouyancy effects caused by variations in the transport
quantities. The source termsFi in the transport equations (3) may model chemical reactions.
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These source terms are scaled by

G = H2

µU
G∗ and Fi = H2

Di0i
F∗i . (4)

Here the terms with the asterisk denote the dimensional quantities. The velocity field must
satisfy the no-slip conditions (u= 0) at the wall (y= 0), as well as the kinematic and stress
boundary conditions at the free surface (y= h(t, x, z)):

ht + uhx = v
(n)T · T · n = K

(t)T · T · n = L

 for y = h(t, x, z). (5)

Here,T =−p · I + (∇u)T + (∇u) denotes the dimensionless stress tensor andt(n) denotes
the unit tangential (normal) vectors on the free surface. The right-hand sides of the normal
and tangential stress conditions may represent models for different surface forces and are
scaled by

K = H

µU
K ∗ and L = H

µU
L∗. (6)

Most of the physically relevant boundary conditions for the transport equations can be
modeled by operators of the form

Bw(Ci ) = 0 for y = 0,

Bs(Ci , u) = 0 for y = h(t, x, z).
(7)

As an example for a transport process coupled with the film flow, we will assume throughout
this paper that a species is absorbed from the ambient air into the film, where it is consumed
by a first-order chemical reaction (see Fig. 1). While the densityρ is considered to be
independent of the concentrationC∗1 of the species, the dependence of the surface tension
onC∗1 is modeled by

σ = σ∞ − σc(C
∗
1 − C∗∞), (8)

whereC∗∞ is the concentration of the species in the ambient air. For this example, the
dimensional source terms readG∗ = (ρg sinβ,−ρg cosβ, 0)T and F∗1 =−kr C∗1 with g
denoting gravitational acceleration,β the inclination angle, andkr the velocity of the first
order reaction. Thus, if we take the concentration in the ambient air as the characteristic
scale (01=C∗∞) and choose the surface velocity (U = ρg sinβH2/2µ) of the film as the
scale for the velocities, the dimensionless source terms in Eqs. (2) and (3) read for our
example problem

G = 2(1,−cotβ, 0)T and F1 = −γ 2C1 (9)

with γ 2= H2kr /D1 being a dimensionless measure of the reaction velocity. The right-hand
sides of the stress conditions are given by

L = 2M · (t · ∇C1) and K = −2(∇ · n) · (S− M(C1− 1)) (10)

with S= σ∞/(ρg sinβH2) being the Weber number andM = σcC∗∞/(ρg sinβH2) being
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FIG. 1. Consumption by first-order chemical reaction of a species absorbed into a thin film flowing down an
inclined plane.

the Marangoni number. Finally we assume that, while there is no mass transfer through the
wall, the mass transfer through the surface can be described by a mass transfer coefficient
hc. Hence the boundary operators for the mass transport equation are given by

Bw(C1) = ∂C1

∂y
= 0 and Bs(C1, u) = n · ∇C1− Sh(1− C1) = 0. (11)

Here,Sh= hcH/D is the Sherwood number.

3. OUTLINE OF THE SYMBOLIC ALGORITHM

In the two-dimensional case (∂/∂z= 0), it is convenient to introduce a stream function
ψ by (u, v)= (ψy,−ψx). Equations (1)–(3) can then be reduced to

Re1ψt + [ψ,1ψ ] = 1ψ + rot3G, (12)

Re Sci (Ci )t + [ψ,Ci ] = 1Ci + Fi (i = 1 . . . N). (13)

where we used the notations [f, g] := fygx − fxgy and rot3 := (G1)y − (G2)x.
The no-slip conditions aty= 0 yield in terms of the stream function

ψ = 0 and ψy = 0. (14)

The kinematic condition at the free surface can be written in the following “conservation
form” (using the notationψ(h) :=ψ(t, x, h(t, x)) and the chain ruleψx(h)+ψy(h) · hx =
[ψ(h)]x):

ht + [ψ(h)]x = 0 for y = h(t, x), (15)
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The following conditions can be derived from the stress conditions aty= h(t, x):

−p− 2
1+ h2

x

1− h2
x

ψxy− K + 2
hx

1− h2
x

L = 0, (16)

ψyy− ψxx −
(
1− h2

x

)−1(
4hxψxy−

(
1+ h2

x

)
L
) = 0. (17)

The pressure in condition (16) can be eliminated by replacing that condition by its tangential
derivative and then using the momentum equations

px = ψxxy+ ψyyy− Re(ψyt + [ψ,ψy])+ G1 (18)

py = −ψxxx− ψxyy− Re(ψxt + [ψ,ψx])+ G2 (19)

to eliminatepx andpy in the new condition (see Atherton and Homsy [14]). Note that this
means that the highest derivative with respect toy in the new condition will beψyyy. Also
note that all these manipulations of the equations can easily be done automatically by a
computer algebra system.

The crucial step in the long-wave approximation is to take a large wavelength as a cha-
racteristic length scale for thex-direction rather than the film thicknessH which is only an
appropriate length scale for they-direction. This suggests a rescaling of the independent
variables,

t → α−1τ, x→ α−1ξ, y→ η (20)

with α¿ 1 being the dimensionless wavenumber. Moreover, we assume a “strong” surface
tension, i.e.,S= S̄α−2 with S̄=O(1). Now we substituteψ andCi by asymptotic series
in α

ψ = ψ0+ ψ1α + ψ2α
2+ · · · (21)

Ci = Ci,0+ Ci,1α + Ci,2α
2+ · · · (22)

and by equating like powers ofα—a standard operation of computer algebra systems—we
obtain a hierarchy of equations. For our example, this hierarchy can be written in the form

ψn,ηηηη = An(ψ0, . . . , ψn−1,C1,0 . . .C1,n−1), n = 0, 1, 2 . . . (23)

C1,n,ηη − γ 2C1,n = Bn(ψ0, . . . , ψn−1,C1,0 . . .C1,n−1), n = 0, 1, 2 . . .. (24)

Because the boundary conditions (14) and (11) forψ andC1 are linear, all ordersψn and
C1,n have to satisfy them. The (nonlinear) stress conditions (16), (17) yield the following
conditions forψn at the surfaceη = h(τ, ξ):

ψn,ηηη(τ, ξ, h(τ, ξ)) = an(ψ0, . . . , ψn−1,C1,0 . . .C1,n−1), n = 0, 1, 2 . . . (25)

ψn,ηη(τ, ξ, h(τ, ξ)) = bn(ψ0, . . . , ψn−1,C1,0 . . .C1,n−1), n = 0, 1, 2 . . .. (26)

For n= 0, the right-hand sides of Eqs. (23), (24), and (26) are zero, while the right-hand
side of Eq. (25) is given bya0 = −G1=−2. Thusψ0 is a cubic polynomial inη andC1,0
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can be found by integrating the homogenous linear differential equation given by (24). This
yields

ψ0 = hη2− 1

3
η3, (27)

C1,0 = Shcosh(γ η)

Shcosh(γh)+ γ sinh(γh)
. (28)

For h≡ 1, this corresponds to the basic state of the absorption flow.
If all lower ordersψ j ,C1, j ( j < n) are already determined forn> 0, ψn can be found

by integrating the right-hand sides four times with respect toη, and then matching the
boundary conditions by solving a simple linear equation system. By the method of variation
of constants, the problem of solving the inhomogenous differential equation (24) is also
reduced to an integration and solving a simple linear equation system. It can be shown by
induction that the right-hand sides of (23) and (24) will be (formal) polynomials in the
termsη, cosh(γ η), and sinh(γ η). Hence all necessary integrations can easily be performed
automatically by the computer algebra system.

The series solution (21) obtained in this way is finally substituted in the kinematic con-
dition (15), which has not been used up to now. This yields the evolution equation for the
film thicknessh:

hτ + [ψ0(h)]ξ + α[ψ1(h)]ξ + α2[ψ2(h)]ξ + · · · = 0. (29)

For our example, this equation is given up to first order inα by

hτ + 2h2hξ + α ∂
∂ξ

[
8

15
Rh6hξ − 2

3
cotβh3hξ + 2

3
S̄h3hξξξ

− 4M Shγ 2h2hξ
(Shcosh(γh)+ γ sinh(γh))2

]
+ · · · = 0. (30)

If the absorption has no influence of the film flow (i.e.,M = 0), the second-order expansion
obtained in this way is equal to the one given by Lin [5]. If the surface tension terms are
rescaled according tōS→α2S̄, the third-order expansion is the same as the one given by
Nakaya [9].

Some of the steps in the above outline of the symbolic algorithm were presented for
the model problem only in order to avoid some necessary, but minor case distinctions for
the general equation. For example, if a buoyancy effect is present, the right-hand side of the
nth order equation (23) forψn depends also onC1,n, which means that the species equations
must always be solved prior to the stream function equations. Some of these case distinctions
were included in our MAPLE-implementation of the above algorithm, which is thus capable
of deriving the evolution equations automatically for a wide range of different film flow
problems, if the problem dependent termsG, Fi , L, K , Bw, andBs in the general equation
system are given as input.

4. LINEAR STABILITY ANALYSIS

Using computer algebra for a linear stability analysis of the(2n+ 1)st order evolution
equation is straightforward: We substitute a normal mode perturbation of the uniform flow
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h= 1+ δ exp(ik(ξ −cτ)) into Eq. (29), taylor-expand up to first order inδ, and then divide
by δ exp(ik(ξ −cτ)). The result is the(2n+ 1)st order dispersion relationD(k, c)= 0. In a
spatial stability analysis, we assume thatk= 1+ iki andc real. A symmetry consideration
shows thatki must be an odd andc must be an even function ofα. Hence a symbolic solution
of the dispersion relation, which is consistent with its truncation order, can easily be found
by assuming expansions

ki =
n∑

j=0

κ2 j+1α
2 j+1, c =

n∑
j=0

λ2 jα
2 j (31)

for ki andc and then determining the coefficientsκ2 j+1 andλ2 j by equating like powers of
α. Thus the following formula for the spatial growth rate—which is given by−αki in the
original scaling—is found from the first-order equation for our model problem:

−αki = α2

(
1

15
(4R− 5 cotβ − 5α2S)− 1

2

M Shγ 2

(Shcosh(γ )+ γ sinh(γ ))2

)
. (32)

If the chemical reaction is not present or has no effect on the surface tension (i.e.,M = 0,
Sh= 0, orγ = 0), this reduces to the well-known result that film flow is unstable for small
wavenumbers ifR> 5/4 cotβ and that increasing the capillary parameterSdecreases both
the critical wavenumber and the growth rates of the unstable modes (see, e.g., Lin and Wang
[3]).

If neitherM , Sh, norγ are zero, Eq. (32) shows that the Marangoni effect caused by the
absorption stabilizes the film flow: The critical Reynolds numberRc is increased to

Rc = 5

4
cotβ + 15

8

M Shγ 2

(Shcosh(γ )+ γ sinh(γ ))2
. (33)

This stabilizing effect can be explained qualitatively by the fact that the gradient of the
concentration profile in the base state is positive. Thus the surface tension will be decreased
at crests and increased at troughs of a disturbance, which causes a leveling flow.

In order to resolve the dispersion of linear waves, higher-order evolution equations must
be considered. Up to fourth-order corrections, the phase velocity is thus found to be given
by

c = 2+α2

[(
40

63
R(α2S+ cotβ)− 32

63
R2− 2

)
+M R Sh

{
19

5

γ 2

(Shcosh(γ )+ γ sinh(γ ))2

+Sc

(
(16γ 3− 9γ ) cosh(γ )+ 6(γ 2+ 1) sinh(γ )+ 3γ cosh(3γ )

6γ (Shcosh(γ )+ γ sinh(γ ))3

+Sh
(16γ 2− 3) sinh(γ )+ 6γ cosh(γ )+ 3γ sinh(3γ )

6γ (Shcosh(γ )+ γ sinh(γ ))3

)}]
. (34)

Again, if the absorption does not influence the flow, this formula reduces to the result given
in Lin and Wang [3].

An obvious advantage of the long-wave approximation compared to numerical solutions
of the Orr–Sommerfeld equations is that the results are given in symbolic form and hence
allow for a qualitative understanding of the mechanisms. As an example we analyze the
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dependence of the growth rate (32) on the Sherwood numberSh: If the mass transfer
is very fast (Sh→∞) the stabilizing effect of the absorption vanishes since the surface
concentration will be always equal to the concentration in the air and hence the surface
tension will be constant. On the other hand, if there is no mass transfer at all (Sh→ 0),
Eq. (32) reduces to the same result since there is now no chemical reaction and hence no
concentration gradient in the film. It should be noted that the capillary numberS, which was
calculated with the surface tension corresponding to the air concentration, should actually
be replaced in this case byS+ α2M in Eq. (32), since the concentration at the surface, as
well as in the whole film, is now zero. This small difference is of course consistent with the
truncation order of (32) and is corrected if higher orders are considered.

From the two limits above it is clear that there is a finite value ofSh for which the
stabilizing effect is maximal. This suggests enhancing the stability of the flow by controlling
the Sherwood number, which might be done, at least to some extent, by modifying the air
flow above the film. The stabilizing effect becomes maximal forSh= γ tanhγ . As an
example, Fig. 2 shows the dependence of the spatial growth rate for the valuesSh= 0,
Sh= 5, andSh= 0.762 which is the “optimal” Sherwood number forγ = 1.

While the above example shows the usefulness of low-order long wave approximations
for the stability analysis of film flow problems with complex transport processes, there is
no decisive way to determine a priori whether the asymptotic result is in fact reliable for a
given small but finite wavenumber. The computer algebra methods offer a heuristical way
to estimate the range of validity of the approximation, simply by comparing the low-order
results with higher order results. Figure 3 compares the predictions of the dependence of the
critical wavenumber (i.e., the smallest positive valueαc such thatki = 0) on the Reynolds
number by the first-, third-, and fifth-order approximation. ForR> 3 the first and third order
deviate considerably from each other which indicates that the first-order approximation is

FIG. 2. Stabilization of film flow by controlling the absorption rate via the Sherwood number. Other parameters
are given byR= 2, S= 60,β = π/2, M = 3, Sc= 5, γ = 1.
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FIG. 3. Neutral stability curves as predicted by different orders of the long-wave approximation (S= 60,
β =π/2, no absorption).

no longer valid. Comparison with the fifth-order approximation shows that the range of
validity of the third-order approximation is not significantly larger.

However, the weak improvement in the range of stability for higher-order approximations
is mainly due to the fact that the polynomial approximations (31) ofki andc are not very
convenient because of the—clearly unphysical—tendency of high-order polynomials to
oscillate for increasingα. This unphysical behaviour can be overcome by using a rational
(Padé-) approximation instead:

−ki = α p0+ p2α
2+ · · ·

1+ q2α2+ · · · , c = r0+ r2α
2+ · · ·

1+ s2α2+ · · · . (35)

The easiest way to find appropriate Pad´e-approximants ofki and c is to calculate the
Padé-approximations of the polynomial approximants which we have already determined.
Although the range of validity of these polynomial approximations is very small, they do
match the first few derivatives atα= 0 of the exact growth rate and phase velocity, which
is all we need to calculate Pad´e-approximants of the exact solutions.

In addition, the rational approximations can be constructed in such a way that they reflect
the expectation that very short waves should decay rapidly because of surface tension, i.e.,
ki →∞ asα→∞. The (3,2)-Pad´e-approximation forki is the only one which can be
derived from our fifth-order polynomial approximation which has the expected behaviour
forα→∞as well as the correct symmetry properties. In Fig. 4, we present predictions of the
first-, third-, and fifth-order polynomial approximations and a (3,2)-Pad´e-approximation.
These predictions are compared with experimental data taken from Krantz and Owens [15]
for the growth rate and the phase velocity of a disturbance of a film flow on a vertical wall.
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FIG. 4. Spatial growth rate and phase velocity as predicted by different polynomial approximation orders ((1),
(3) and (5)), the Pad´e-approximation (P), and the numerical solution of the simplified Orr–Sommerfeld equa-
tion (A). Experimental data taken from Krantz and Owens. Parameters areR= 1.94, S= 0.815, andβ =π/2.

A numerical solution of the approximate Orr–Sommerfeld equation as proposed by Anshus
and Goren [17] is also included.

As shown in Fig. 4, the agreement of the predictions by the fifth-order Pad´e-approximation
with experimental data is as good as that of the Anshus/Goren method, while the polynomial
approximations are only valid up to a wavenumber of 0.25. In particular, they predict
neither the critical wavenumber nor the wavenumber of maximum growth rate correctly.
As indicated by Krantz and Owens [15], the disagreement between the predictions of the
Anshus/Goren method for the phase velocity and the experimental data is likely due to
nonlinear effects.

Figure 5 shows a similar comparison with data obtained by Liuet al. [16] for an very
small inclinination angleβ andR= 23. Even for this comparatively high Reynolds number
the Pad´e-approximation still agrees at least qualitatively with the numerical solution and the
data, although the polynomial approximations already fail for wavenumbers as small as 0.02.

5. PERMANENT WAVES

The main objective of this section is to illustrate how higher-order theories obtained
by computer algebra techniques provide a useful heuristic criterion to assess the range

FIG. 5. Spatial growth rate and phase velocity as predicted by different polynomial approximation orders ((1),
(3) and (5)), the Pad´e-approximation (P), and the numerical solution of the simplified Orr–Sommerfeld equa-
tion (A). Experimental data of Liu, Paul, and Gollub. Parameters areR= 23, S= 62, andβ = 0.08.
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of validity of standard weakly nonlinear theories. As an example for a weakly nonlinear
analysis, we use Landau theory in order to describe the equilibration of a linearly unstable
monochromatic disturbance due to the nonlinear interaction with its stable higher harmonics.
In order to account for these interactions up to third order of the amplidude of the disturbance,
we follow Nakaya [9] and expressh(τ, ξ) as a Fourier series

h = ε(eiϕ + e−iϕ)+ ε2
(
h2,2 e2iϕ + h0,0+ h−2,2 e−2iϕ

)
+ ε3

(
h3,3 e3iϕ + h1,3 eiϕ + h−1,3 e−iϕh−3,3 e−3iϕ

)
. (36)

Here the coefficientsh−k,l are the complex conjugates ofhk,l . The dependence of the
amplitudeε and the phaseϕ on (τ, ξ) is approximated by the expansions

εξ = 0, ετ = s1ε + s3ε
3+ · · ·

ϕξ = 1, ϕτ = ω1+ ω3ε
2+ · · ·. (37)

Again the substitution of the expansions (36) and (37) into the evolution equation is readily
implemented in a computer algebra system. Equating like powers inε yields a hierarchy of
linear equations for the coefficientshl ,k, sk, andωk. The symbolic solutions of these linear
equations are easily found ifh3,1 is set to zero, following the arguments given in Nakaya [9].

Sinceετ = 0 for a permanent wave, its amplitude is found from (37) to be

ε =
√
−s1

s3
. (38)

Permanent waves only exist if this amplitude is real. If we base the analysis on the first-
order evolution equation for the example problem, this condition is given by the symbolic
expression

0< ε2 = − α
2

450

(
−4R+ 5 cotβ + 5Sα2+ 15

2

M Shγ 2

(Shcoshγ + γ sinhγ )2

)
×
(
−4R+ 5 cotβ + 35Sα2+ 15

2

M Shγ 2

(Shcoshγ + γ sinhγ )2

)
. (39)

The positive root of the first factor of (39) is the critical wavenumber already found from
linear stability analysis, which is an upper bound for the existence of permanent waves. The
second factor of expression (39) also suggests a lower bound for the existence of permanent
waves. It is intuitively clear that the equilibrating effect of the nonlinear interaction will
vanish as the wavenumber decreases, since the first harmonics of an unstable monochro-
matic wave become eventually unstable, too. However, the relevance of the lower bound
predicted by (39) is questionable since the amplitude for the first harmonicε2|h2,2| be-
comes larger thanε close to that wavenumber, which violates the assumptions of Landau
theory.

Using a higher-order evolution equation for the weakly nonlinear analysis corroborates
that the lower bound given by (39) is meaningless, as is illustrated in Fig. 6. It compares
the dependence of the amplitudes for the first three harmonics (ε, ε2|h2,2|, ε3|h3,3|) on the
wavenumber as predicted by the first- and third-order evolution equation. In the case shown,
the results agree reasonably well down to wavenumber 0.07, but exhibit extreme qualita-
tive differences as the wavenumber decreases further. Instead of the treacherously regular
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FIG. 6. Illustration of the invalidity of Landau theory far away from the bifurcation point: The contributions
of the first three modes as predicted by Landau-theory using the first- (dashed line) and third-order (solid line)
evolution equation differ even qualitatively for small wavenumbers (R= 1, S= 60,β =π/2, no absorption).

behaviour of the first-order results, the third-order amplitudes finally reach a singularity.
This is due to the fact that the third-order evolution equation captures more details of the
complex nonlinear dynamics of the original system and this nonlinear interaction causes
increasing contributions of higher harmonics to the solution of the evolution equation as the
wavenumber decreases, such that the representation (36) finally fails to approximate it. In
this context, it is also interesting to look at numerical solutions of the “fully nonlinear” evo-
lution equation (30) which are obtained by a pseudospectral approach similar to the method
used by Jooet al.[12]. Figure 7 shows the first three Fourier coefficients of the equilibrium
solutions that evolved from a initial sinusoidal disturbance of a given wavenumber. These
numerical solutions agree well with the first-order Landau theory down to wavenumber
0.065, where they undergo an aprupt change. As the wavenumber decreases, the contribu-
tions of higher modes become more and more important, and it takes longer and longer to
reach the equilibrium. At wavenumber 0.054, the numerically obtained solution appeared
not to equilibrate anymore but to become time-periodic. For higher Reynolds numbers, the
numerically calculated equilibrium solutions resemble the results of the third-order Landau-
theory rather than the first-order results. In the vicinity of the pole the numerical solutions
exhibit the “catastrophic” behaviour in time, also observed by Jooet al. [12].

These numerical observations obviously corroborate that a comparison between third-
order and first-order results can be used as a heuristic criterion of the range of validity of
the weakly nonlinear theory beyond the bifurcation point. (The intermediate chararacter of
the “fully nonlinear” evolution equation should be pointed out: while taking only first-order
terms into account, it captures the full nonlinear mode interaction which is pruned by first-
and third-order Landau theory.) The situation illustrated above for Landau theory agrees
also qualitatively with results obtained by a higher-order version of Gjevik’s method [6]



14 LANGE, NANDAKUMAR, AND RASZILLIER

FIG. 7. Contributions of the first three modes versus the wavenumber of the initial disturbance as predicted
by numerical solution of the “fully nonlinear” first-order evolution equation. Also shown are some characteristic
waveforms (R= 1, S= 60,β =π/2 no absorption).

and by a weakly nonlinear analysis based on higher-order equations of the Kuramoto–
Sivashinski hierarchy (see, e.g., Shlang and Sivashinsky [18]), which again can be derived
automatically from the higher-order evolution equations using computer algebra.

6. CONCLUSION

We illustrated how a large class of thin film flow problems coupled with heat and mass
transfer processes can be investigated within a common framework using computer algebra
methods. Even in situations involving complex transport processes interacting with the
flow, the appropriate long-wave evolution equations can be derived automatically, and their
dynamic behaviour is readily studied by standardized implementations of the methods of
linear and nonlinear stability analysis.

On one hand, an analysis based on low-order equations has the advantage to result
in relatively simple formulas describing the stability behaviour, which provide a good
orientation for problems depending on many parameters and may suggest strategies for
optimization of industrial processes involving thin film flows. On the other hand, considering
higher-order evolution equations yields heuristic criteria estimating the ranges of validity for
both the linear and the nonlinear results obtained at first order. Using Pad´e-approximations,
linear stability analysis based on the high-order long-wave approximation agrees well with
experimental results and numerical solutions of the Orr–Sommerfeld equations even for
relatively short waves and moderately high Reynolds numbers.

While presented here for the stream function formulation of the Navier–Stokes equation
for simplicity, the automatic derivation of evolution equations is readily extended to three
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dimensions. Another straightforward extension which is particularly useful for applications
to coating processes is to consider multilayer films, which yields a system of evolution
equations for the thicknesses of the different layers.

The available computer hardware, in particular memory, clearly limits the applicability
of the symbolic methods presented in this paper. The storage space needed by our MAPLE-
implementation of the derivation of the evolution equation increased roughly by a factor
4 from one order to the next for a film without transport processes. For the fifth order, a
maximum of 40 Megabytes was necessary. The computing time for the fifth order was about
20 minutes on a IBM Risc 6000 workstation.

A more fundamental limitation of the computer algebra methods is given by the fact that
the zeroth order of the equation hierarchy must allow a closed form solution. Thus they
cannot be applied to film flows of fluids with complex rheological behaviour or transport
processes involving higher-order chemical reactions. Despite these restrictions, there is a
large number of applications involving thin film flow coupled with transport processes, for
which the computer algebra methods outlined in this paper are a very useful engineering
tool.
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